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Abstract. We consider an area preserving map in the neighbourhood of an elliptic fixed
point, whose linear frequency is stochastically perturbed. The nonlinearity couples the random
motion in the phase with the action which exhibits a diffusive behaviour. If the unperturbed
dynamics is almost integrable and no macroscopic resonant structures are present in the phase
space, a Fokker–Planck equation for the action diffusion is derived and its solution shows an
excellent agreement with the simulation of the process. The key points are the description of the
unperturbed motion by using the normal forms and the derivation of a stochastically perturbed
interpolating Hamiltonian for which the action diffusion coefficient is analytically computed.
The angle averaging is justified by the much faster time scale on which the angle relaxes to a
uniform distribution.

1. Introduction

The action diffusion in almost integrable Hamiltonian systems (Arnold’s diffusion) has been
intensively investigated [1–3], but both the analytical results and the numerical experiments
show that its physical relevance is limited by the critical dependence on the initial conditions.
As a consequence the slow diffusion observed in some physical experiments may be
explained by the presence of a small stochastic noise which is unavoidable in realistic
situations.

The effect of a small amount of noise on area-preserving maps in the stochastic regime
has already been investigated [4, 5]: the noise is inserted to avoid the singular behaviour of
orbits with a long correlation time, which are present in a strongly perturbed map and the
techniques used do not work when the amplitude of the noise tends to zero.

Here we analyse the effect of small noise in the almost integrable case: by introducing
a diffusion time, we justify a Fokker–Planck equation for the distribution function in the
unperturbed action in the limit of small amplitude for the noise. We consider a polynomial
area-preserving map in the neighbourhood of an elliptic fixed point at the origin whose
linear frequency is stochastically perturbed: the unperturbed phase space of the map shows
a region of bounded motion almost completely foliated with invariant curves and a region
A of unbounded motion. The small stochastic perturbation determines a random motion
across the invariant curves and a diffusion in the action variable up to the boundary ofA,
whereas the angle relaxes very rapidly to a uniform distribution. As a consequence we can
consider the angle variable as a fast variable and an averaging procedure is justified by
stochastic theory of adiabatic invariance [6].
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The results we obtain are relevant for beam dynamics, since the transverse motion of
a particle is described by a symplectic map; the presence of ripples in the currents feeding
the quadrupoles determines a perturbation of the linear frequency, which can be considered
as a stochastic process. The experiments on the SPS at CERN [7] show that the loss of the
beam is due to the combined effect of the nonlinear magnetic fields and the ripples. For
this reason we have supposed that the noise affects mainly the linear frequencies (tunes);
indeed in this case no diffusion occurs if the nonlinearity is switched off.

In this paper we describe a procedure which allows one to obtain a Fokker–Planck
equation for the action variable computed by means of the Birkhoff normal forms [8, 9];
the key point is to construct an interpolating Hamiltonian for the stochastic map up to
second order in the perturbation parameter (i.e. the strength of the noise) in order to write
the Liouville equation for the distribution function. Then we use the approach developed
by Gurievichet al [10] to obtain a Fokker–Planck equation in the action-angle variables:
since the angle has a fast relaxation to a uniform distribution, by an averaging method we
drop the angle dependence and obtain a diffusion equation for the distribution function in
the action [11]. The problem can be solved in a systematic way for any map known in
analytic form or by a truncated Taylor expansion, as it is the case in accelerator physics.
The computation of the diffusion coefficient directly from the map could be achieved if one
justifies a central limit theorem for the random walk in the action variable. This approach,
which needs the results of the theory of the stochastic processes, will be considered in the
future.

We explicitly study the H́enon quadratic map and we compare the solution of the
Fokker–Planck equation with the distribution function numerically computed by iterating
the map. When no low-order resonances are present in the stable region, we find an excellent
agreement between the simulations and the analytical results. The technique proposed here
can be extended to symplectic maps of higher dimensionality.

The plan of the paper is the following: in section 2 we briefly review the diffusion
problem for polynomial maps and formulate the model of a stochastically perturbed map. In
section 3 we compute the interpolating Hamiltonian and determine the diffusion coefficient.
In section 4 some numerical examples are discussed.

2. Stochastic maps

We consider a stochastic area-preserving map defined according to

Fε :

(
xn+1

pn+1

)
= R(εξn)F (xn, pn) F (x, p) = R(ω)

(
x

p + b(x)

)
. (2.1)

In order to define approximate action-angle variables we introduce an interpolating
Hamiltonian whose phase flow at integer times agrees with the iteration of the map (2.1).
It is convenient to use complex coordinatesz = x − ip so that the map reads

zn+1 = eiεξnF (zn, z
∗
n). (2.2)

Assuming that the linear frequencyω/2π is not a rational number, we compute the
normalizing transformationz = 8(ζ, ζ ∗) and the normal formU , by solving the conjugation
equation

F B 8 = 8 B (U + EN) (2.3)

whereUN = ζei�(ζζ ∗) andEN = O(|ζ |N+1) is the error term. If we introduce the action-
angle variables(J, 2)

ζ =
√

2Jei2 (2.4)
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the normal mapU reads

Jn+1 = Jn

2n+1 = 2n + �(Jn) (2.5)

and agrees with the phase flow at integer times of the Hamiltonian

H0(J ) = ωJ + h2J
2 + · · · + h[(N+1)/2]J

[(N+1)/2] (2.6)

whereH0 is defined by dH0/dJ = �(J ). By introducing the Lie operatorDH associated
with the HamiltonianH ,

DHf (J, 2) = [f, H ] = ∂f

∂2

∂H

∂J
− ∂f

∂J

∂H

∂2
(2.7)

where [, ] denotes the usual Poisson bracket, the initial mapFε can be written in the form

Mε

(
Jn

2n

)
= exp(εξnDV (J,2)) B exp(DHB(J ))

(
Jn

2n

)
(2.8)

up to an error of order O(J [N+1/2]); the perturbationV (J, 2) is given by

V (J, 2) = 1
28(

√
2Jei2,

√
2Je−i2)8∗(

√
2Jei2,

√
2Je−i2). (2.9)

3. The interpolating Hamiltonian

In order to determine an interpolating Hamiltonian for the map (2.8), we introduce the
stochastic process4(t) defined according to4(t) = ξn when t ∈ [n, n + 1[ and we look
for an interpolating Hamiltonian of the form

H(J, 2, ε4(t)) = H0(J ) + ε4(t)H1(J, 2) + ε242(t)H2(J, 2) + O(ε3). (3.1)

For our purposes it is sufficient to consider the orderε2 in the expansion (3.1); we also
remark that we have neglected an error of the order O(|ζ |N+1) in the normal form expansion
so that our analysis will be valid in a region where this error is small with respect toε2.
From the explicit form of the mapMε , we obtain a relation between the expansion of
the interpolating Hamiltonian and the expansion of the map. On the one hand, the Lie
transformation exp(εξnDV (J,2)) explicitly reads

Jn+1 = Jn + εξn[J, V ](Jn, 2n) + 1
2ε2ξ2

n [[J, V ], V ](Jn, 2n) + O(ε3)

2n+1 = 2n + εξn[2, V ](Jn, 2n) + 1
2ε2ξ2

n [[2, V ], V ](Jn, 2n) + O(ε3). (3.2)

On the other hand, the phase flow from the time 0 to the time 1 of the Hamiltonian (3.1),
can be written in form (2.8) either by direct computation or by performing the change
of variables defined by the time-dependent generating functionF = Ĵ2 + H0(Ĵ )(1 − t)

according to (the generic case fromt = n to t = n + 1 can be analysed in the same way)

Ĵ = J

2̂ = 2 + �(J )(1 − t)

}
t ∈ [0, 1[. (3.3)

In the new variables the Hamiltonian reads

Ĥ (Ĵ , 2̂, t) = ε4(t)H1(Ĵ , 2̂ − �(Ĵ )(1 − t)) + ε242(t)H2(Ĵ , 2̂ − �(Ĵ )(1 − t))) + O(ε3)

(3.4)
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and the expansion of the phase flow is given by

Ĵ1 = Ĵ0 + εξ0

∫ 1

0
[Ĵ0, H1(Ĵ0, 2̂0 − �(J0)(1 − t))] dt + ε2ξ2

0

∫ 1

0
dt

∫ t

0
ds[[ Ĵ0, H1(Ĵ0, 2̂0

−�(J0)(1 − t))], H1(Ĵ0, 2̂0 − �(J0)(1 − s))]

+ε2ξ2
0

∫ 1

0
[Ĵ0, H2(Ĵ0, 2̂0 − �(J0)(1 − t))] dt + O(ε3)

2̂1 = 2̂0 + εξ0

∫ 1

0
[2̂0, H1(Ĵ0, 2̂0 − �(J0)(1 − t))] dt

+ε2ξ2
0

∫ 1

0
dt

∫ t

0
ds[[2̂0, H1(Ĵ0, 2̂0 − �(J0)(1 − t))], H1(Ĵ0, 2̂0

−�(J0)(1 − s))] + ε2ξ2
0

∫ 1

0
[2̂0, H2(Ĵ0, 2̂0 − �(J0)(1 − t))] dt + O(ε3).

(3.5)

By comparing the expansions (3.2) and (3.5), we obtain the relations∫ 1

0
H1(J, 2 − �(J )(1 − t)) dt = V (J, 2)∫ 1

0
H2(J, 2 − �(J )(1 − t)) dt = 1

2

∫ 1

0
dt

∫ t

0
ds[H1(J, 2 − �(1 − s)), H1(J, 2

−�(1 − t))] (3.6)

which allow one to compute explicitlyH1 and H2 from V . For the sake of simplicity
we only report the formula forH1. Letting vk(J ) and h1,k(J ), k ∈ Z, be thek Fourier
coefficients ofV and ofH1, respectively, the following relation holds

h1,k(J ) = vk(J )
(k�(J )/2)

sin(k�(J )/2)
eik�(J )/2 k 6= 0 and k�(J ) 6= 0 mod 2π (3.7)

which shows the appearance of divisors; the conditionk�(J ) 6= 0 mod 2π amounts to
demanding that the phase space region we are analysing is free from resonances of order
k. Indeed we have a natural cut-off on the Fourier expansion due to the fact that we have
performed the normal form reduction up to a finite orderN (equation (2.3)) and the region
where the normalizing transformation is defined cannot contain resonances of order less
thanN according to the normal forms theory [12]. Without loss of generality we suppose
v0(J ) = 0 and we seth1,0(J ) = 0.

4. The diffusion equation

By using the interpolating Hamiltonian we derive the diffusion equation for the distribution
in the action variable. One has to remark that the interpolating Hamiltonian is not uniquely
defined but depends, for instance, on the choice of the stochastic process4(t). This
freedom has not to change the statistical properties of the phase flow, so that we expect
that the diffusion equation depends only on quantities which enter in the definition of the
stochastic map (2.8).

We observe that4(t) is not a stationary process since the correlations are

〈4(t)4(t + τ)〉 =
{

σ 2 if [ t ] − t 6 τ < [t ] − t + 1

0 otherwise.
(4.1)
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By following the same procedure as [10], we start from the Liouville equation for the
particle densityρ(J, 2, t) which reads

∂ρ

∂t
+ �

∂ρ

∂2
+ ε4[ρ, H1] + ε242[ρ, H2] = 0 (4.2)

and we separate the density into a mean and a fluctuating part

ρ = ρ0 + ερ1 ρ0 = 〈ρ〉 〈ρ1〉 = 0. (4.3)

Taking the mean value of equation (4.2) we obtain

∂ρ0

∂t
+ �

∂ρ0

∂2
+ ε2[〈4ρ1〉, H1] + ε2σ 2[ρ0, H2] = 0. (4.4)

Subtracting the equation (4.4) from (4.2), we have

∂ρ1

∂t
+ �

∂ρ1

∂2
= 4(t)[H1, ρ0] + O(ε) (4.5)

whose solution can be explicitly given in the form

ρ1(J, 2, t) =
∫ 0

−t

4(t + τ)[H1, ρ0](J, 2 + �τ, t + τ) dτ + O(ε). (4.6)

The Fokker–Planck equation for the average distributionρ0, is obtained by replacing (4.6)
in equation (4.4), taking into account that the expectation value in equation (4.4) can be
explicitly calculated according to

[〈4ρ1〉, H1] =
∫ 0

−t

[〈4(t)4(t + τ)〉[H1, ρ0](J, 2 + �τ, t + τ), H1(J, 2)] dτ

= σ 2
∫ 0

[t ]−t

[[H1, ρ0](J, 2 + �τ, t + τ), H1(J, 2)] dτ (4.7)

where we have used equations (4.1). Instead of solving the full equation, we observe that
the angle variable can be considered a fast variable in the diffusion limitε → 0, n → ∞,
ε2n = constant. Indeed from the unperturbed dynamics

2n+1 = 2n + �(Jn) (4.8)

if Jn is a stochastic process with mean valueJ0 and correlation〈1Jn1Jk〉 ∝ ε2 min(n, k)

(where1Jn = (Jn − J0)), then the following estimate holds,

〈(12n)
2〉 =

n−1∑
k,h=0

〈(�(Jk) − �(J0))(�(Jh) − �(J0))〉

=
n−1∑

k,h=0

(
d�

dJ
(J0)

)2

〈1Jk1Jh〉 ∝
(

d�

dJ
(J0)

)2

×ε2
n−1∑

k,h=0

min(h, k) ∝
(

d�

dJ
(J0)

)2

ε2n3 (4.9)

up to terms O(n4ε4). Equation (4.9) means that the angle variable is completely relaxed to
the uniform distribution in the diffusion limit, the relaxation time being proportional toε−2/3.
A rigorous proof of this result for anisochronous Hamiltonian systems can be found in [13].
Since the action and angle time scales are separated, we consider the distributionρ(J, t),
reached fort � ε−2/3 once the angle has relaxed; it will satisfy an equation where the
differential operator is replaced by its angle average. The correct mathematical procedure
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consists in applying the averaging theorem: the distribution functionρ(J, 2, t) is replaced
by its angle average

ρ0(J, t) = 1

2π

∫ 2π

0
ρ0(J, 2, t) d2 (4.10)

and the same average is applied to the differential operator. Denoting with〈 〉2 the average
on the angle variable2, we evaluate〈[〈4ρ1〉, H1]〉2 using (4.7):

〈[〈4ρ1〉, H1]〉2 =
∫ 0

[t ]−t

〈[[H1(J, 2 + �τ), ρ0(J, t)], H1(J, 2)]〉2 dτ

=
∫ 0

[t ]−t

〈
∂

∂2

(
∂H1

∂J
(J, 2)

∂H1

∂2
(J, 2 + �τ)

)〉
2

dτ
∂ρ0

∂J
(J, t)

− ∂

∂J

( ∫ 0

[t ]−t

〈
∂H1

∂2
(J, 2)

∂H1

∂2
(J, 2 + �τ)

〉
2

dτ
∂ρ0

∂J
(J, t)

)
. (4.11)

The first term on the right-hand side of equation (4.11) is manifestly zero. The second one
can be simplified by observing that the distribution function has a variation of orderε2 for
t ∈ [n, n + 1[, wheren is any integer. As a consequence we average ont in any such
interval by neglecting the variation ofρ0(J, t), namely for anyt ∈ [n, n + 1[ we replace
the coefficient of∂ρ0/∂J with an integral int over that interval. Observing that∫ n+1

n

dt

∫ 0

[t ]−t

dτ f (τ) =
∫ 0

−1
ds

∫ 0

s

dτ f (τ) (4.12)

we replace (4.11) with the following time-averaged expression in order to obtain a diffusion
equation which does not depend on our choices in the construction of the interpolating
Hamiltonian (3.1),

〈[〈4ρ1〉, H1]〉2 = − ∂

∂J

( ∫ 0

−1
ds

∫ 0

s

dτ

〈
∂H1

∂2
(J, 2)

∂H1

∂2
(J, 2 + �τ)

〉
2

∂ρ0

∂J
(J, t)

)
= − 1

2

∂

∂J

( ∫ 0

−1
ds

∫ 0

−1
dτ

〈
∂H1

∂2
(J, 2)

∂H1

∂2
(J, 2 + �(τ − s))

〉
2

∂ρ0

∂J
(J, t)

)
(4.13)

where we have used the following relation valid for every even function:∫ 0

−1
ds

∫ 0

s

dτ f (τ) = 1

2

∫ 0

−1
ds

∫ 0

−1
dτ f (τ − s) f (τ ) = f (−τ). (4.14)

Using the invariance of the angle average by a translation(2 → 2 + �s) and the first
equation (3.6), which definesH1, to replace it withV we obtain for〈[4ρ1〉, H1]〉2
−1

2

∂

∂J

( ∫ 0

−1
ds

∫ 0

−1
dτ

〈
∂H1

∂2
(J, 2 + �s)

∂H1

∂2
(J, 2 + �τ)

〉
2

∂ρ0

∂J
(J, t)

)
= − 1

2

∂

∂J

(〈
∂V

∂2
(J, 2)

)2〉
2

∂ρ0

∂J
(J, t)

)
. (4.15)

Observing that

〈[ρ0(J, t), H2]〉2 = 0 (4.16)

and defining the diffusion coefficient by

D(J ) = ε2σ 2

2

〈(
∂V

∂2
(J, 2)

)2〉
2

(4.17)
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the Fokker–Planck equation for the distributionρ0(J, t) reads

∂ρ0

∂t
(J, t) = ∂

∂J
D(J )

∂ρ0

∂J
(J, t). (4.18)

It is straightforward to observe that the diffusion coefficientD(J ) depends only on the map
(3.2) and not on our choices in computing the interpolating Hamiltonian.

The proposed approach can be generalized to the case of multidimensional symplectic
maps which can be reduced to the form (2.8). We only report the final result for the diffusion
equation in the action variablesJi, i = 1, . . . , d:

∂ρ0

∂t
(J , t) =

d∑
i=1

d∑
k=1

∂

∂Ji

Di,k(J)
∂

∂Jk

ρ0(J , t) (4.19)

where

Di,k(J) = ε2σ 2

2

〈
∂V

∂2i

∂V

∂2k

〉
Θ

(4.20)

and the symbol〈 〉Θ means the average over all the angle variables2i , i = 1, . . . , d.

5. Numerical results

In order to compare the solution of the diffusion equation (4.18) and the distribution function
calculated by iterating the initial map (2.1), we consider the well known Hènon mapM
perturbed by a random rotation matrix(

xn+1

pn+1

)
= R(εξn)R(ω)

(
xn

pn + x2
n

)
. (5.1)

We have chosenω = 2π(
√

5 − 1)/2, so that we have no macroscopic low-order nonlinear
resonance in the unperturbed phase space (see figure 1(a)). By using a terminology of
accelerator physics, we call the dynamical apertureA of an area preserving mapM

A = sup{r/‖MBk(r, 0)‖ < ∞ ∀k ∈ Z}. (5.2)

For our choice ofω the dynamical aperture is approximately 0.55; by calculating the normal
form U up to order 10 according to equation (2.3), we have a good agreement between
the normal form dynamics generated by8 B U B 8−1 and the initial dynamics up to 80%
of the dynamical aperture (see figure 1(b)): the distance of the orbits in the outer region
is less than 1%. The diffusion coefficient (4.17) is a polynomial in

√
J , so that we cannot

solve analytically the diffusion equation (4.18) and we have used a numerical integrator to
compute the distribution function.

In order to simulate the effect of the dynamical aperture in the diffusion equation (4.18),
we have inserted an absorbing boundary condition at the action which corresponds to the
orbit through the point(0.5, 0.0); this choice is justified by the fact that the diffusion
coefficient (4.17) is divergent at the dynamical aperture (see also [11]). We have considered
a noiseξn as a sequence of independent random variables uniformly distributed between
[−1, 1], so that the man value is zero and the second moment (see equation (4.1)) isσ 2 = 1

3.
In figure 2(a) we compare the distribution functions computed by the diffusion equation

(4.18) by using a numerical algorithm (continuous curve) and the direct iteration of
population in the phase space by using the map (5.1) (histograms); the integration of the
diffusion equation (4.18) is much faster (more than a factor 103) than the simulations with
the map (5.1). We have made the simulations starting from a Gaussian distribution in the
action, whose mean value corresponds to the orbit through the point(0.25, 0.0), whereas
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Figure 1. Phase space of the Hènon map computed by (a) directly iterating the map and (b) using
the normal form at order 10. The frequencyω/2π is equal to the golden mean.

Figure 2. (a) Comparison of the distribution functions for the action variables computed by
a direct simulation (histograms) and by using the Fokker–Planck equation (continuous curves).
(b) Comparison of the diffusion coefficients computed by using the normal form at order 10
(continuous curve) and the direct calculation (stars) according to equation (5.3).

the initial phases are randomly distributed in [0, 2π ]; the value ofε was fixed at 0.005×2π

and we have used a population of 35 000 particles for the simulation. The different curves
(in decreasing order), refer to different iteration numbersn = 0, 2000, 6000, 12 000. The
agreement between the histograms and the continuous curves is very good.

In figure 2(b) we compare the logarithm of the diffusion coefficient (4.17) computed by
using the normal forms at order 10 (continuous curve) with the same quantity computed by
means of the numerical simulations (stars) according to the equation

D(J0) = lim
n→∞

1

2n
〈(Jn − J0)

2〉 ε2n � 1 (5.3)

in thex-axis instead of the actionJ , we report the logarithm of the abscissar of the points
(r, 0), which belong to the corresponding unperturbed orbits. The numerical values are
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obtained withε = 0.001×2π , σ 2 = 1
3 andn = 100; we see that we have a good agreement

between the two diffusion coefficients up to 80% of the dynamical aperture.

6. Conclusions

The proposed method to derive a diffusion equation for the action distribution function of
an area-preserving map stochastically perturbed seems to be very promising to describe the
diffusive phenomena observed in physical experiments when a weak noise together with
nonlinear effects is present. In particular, this method could be applied to the symplectic
maps which describe the betatronic motion in a particle accelerator in order to simulate the
effect of a noise in the feeding current of the quadrupoles.

Appendix

In this appendix we derive equations (3.5) and (3.6), which define the interpolating
Hamiltonian for the map (2.8). By integrating the canonical equations associated to the
Hamiltonian (3.4), we obtain fort ∈ [0, 1[

Ĵ (t) = Ĵ0 + εξ0

∫ t

0
[Ĵ (τ ), H1(τ )] dτ + ε2ξ0

∫ t

0
[Ĵ (τ ), H2(τ )] dτ

2̂(t) = 20 + εξ0

∫ t

0
[2̂(τ ), H1(τ )] dτ + ε2ξ0

∫ t

0
[2̂(τ ), H2(τ )] dτ (A.1)

where for the sake of notationHj(τ) meansHj(Ĵ , 2̂ − �(Ĵ )(1 − τ)), j = 1, 2. Therefore
expansions (3.5) follow by substituting recursivelyĴ (τ ) and 2̂(τ ) with the expansions in
the right-hand side of equation (A.1) up to terms of orderε2. By a direct comparison
of the expansions (3.2) and (3.5), the first equation (3.6) follows immediately. In order
to derive the second equation, which definesH2, we substitute the functionV (J, 2) in
equations (3.2) according to the first equation (3.6), so that the comparison of the second-
order terms provides∫ 1

0
dt [Ĵ0, H2(t)] = −

∫ 1

0
dt

∫ t

0
ds[[ Ĵ0, H1(t)], H1(s)] + 1

2

∫ 1

0
dt

∫ 1

0
ds[[ Ĵ0, H1(t)], H1(s)]

= 1

2

∫ 1

0
dt

∫ 1

t

ds[[ Ĵ0, H1(t)], H1(s)] − 1

2

∫ 1

0
dt

∫ t

0
ds[[ Ĵ0, H1(t)], H1(s)]

= 1

2

∫ 1

0
dt

∫ t

0
ds[[H1(t), H1(s)], Ĵ0] (A.2)

where we have used the Jacobi identity for the Poisson bracket to compute the second term
in the second equation (A.2). An analogous expression can be obtained for [2̂0, H2(t)] so
that the second equation (3.6) holds.
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